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ABSTRACT

An elastic-plasticfinite-elementanalysiswith a criticalcrack-tip-openingangle (CTOA)

fracturecriterionwas usedto model stablecrack growth andfractureof 2024-T3 aluminumalloy
(bare andclad) panels for severalthicknesses. The panelshadeithersingleor multiple-sitedamage

(MSD) cracks subjectedto uniaxialor biaxialloading. Analyseswere also conductedon cracked
stiffenedpanelswithsingleor MSD cracks. The criticalCTOA value for eachthickness was

determinedbymatchingthe failureloadon a middle-cracktensionspecimen. Comparisonswere

madebetweenthe criticalanglesdeterminedfromthefinite-elementanalysesand thosemeasured

withphotographicmethods. Predictedload-against-crackextensionandfailureloadsfor panels
underbiaxialloading,panelswithMSD cracks, and panelswithvariousnumberof stiffenerswere

comparedwithtest data,wheneverpossible. Thepredictedresultsagreed wellwiththe test data

even for large-scaleplasticdeformations.The analyseswere also ableto predictstabletearing
behaviorof a large lead crack in thepresenceof MSD cracks. Theanalyseswere thenused to study

the influenceof stiffenerson residualstrengthin thepresenceof widespreadfatiguecracking. Small
MSD cracks were foundto greatly reducethe residualstrengthfor largeleadcracks evenfor

stiffenedpanels.

INTRODUCTION

Agingof the commercialtransport fleetsaroundtheworld increasesthepossibilityof a

reductionor loss of structuralintegritythroughfatiguecracking. Widespreadfatiguedamage

(cracks developingat several adjacentlocations)is of great concernbecausethe residualstrengthof

a stiffenedstructurewitha singlelong crackmaybe significantlyreducedby theexistenceof

adjacentsmallercracksas postulatedbySwii_[1]. Whereasa singlelong crack in a fuselage

structuremayproduceflapping,a processbywhicha crackedfuselagewould peelopenin a small

local region and leadto safedecompression,a fuselagewitha long leadcrack and multiple-siteor

multiple-elementdamage(MSD or MED) crackingmaynotflap. Tests onpanelswith long lead

cracks andMSD are showingthatresidualstrengthsare stronglydegraded[2]. Currentfuselage

designsmustrely uponperiodicinspectionsto assure safeoperation[3]. Oneof the objectivesinthe



NASA Aging Aircratt Research Program [4] is to develop the methodologyto predict flappingor

failure in damaged fuselage structures in the presence of MSD or MED. The approach is to use a

finite-elementshellcode with global-local,adaptive mesh capabilitiesand appropriate local fracture

criteria to predict progressive failure in complex structures. In the future, fuselage structures maybe

designedby analysis,and verifiedby tests, to produce flapping or improved crack arresting capability
under MSD or MED conditions.

Stablecrack growth in metallicmaterialshave been studied extensivelyusing elastic-plastic

finite-elementmethods [5-15]. These studies were conducted to develop efficienttechniques to

simulatecrack extension and to examinevariouslocal and global fracture criteria. These criteria

included crack-tip stress or strain, crack-tip-openingdisplacementor angle, crack-tip force, energy

release rates, J-integral,and the tearing modulus. Of these, the crack-tip-opening angle (CTOA) or

displacement(CTOD) was shown to be the most suitedfor modeling stablecrack growth and

instabilityduringthe fracture process, deKoning [7] showed that CTOA was nearly constant from

initiationin an aluminumalloy. Shih et al [10] and Kanninenet al [11], in fracture analysesof both
steel and aluminumalloys, showedthat CTOA at initiationwas muchlarger than the value needed

for stable crack growth. Newman [12] used criticalCTOD (or CTOA) values obtained from

compact specimensto predict failure loads for severalother crack configurations (two aluminum

alloys and a very ductile steel) within 10percent. Brocks and Yuan [13], Newman et al [14], and

Demofonti and Rizzi [15] found that CTOD or CTOA was nearlyconstant atter a small amount of

crack growth for various materials and thicknesses. In some cases, the region of stable tearing where

CTOD or CTOA was not constant appeared to be related to thickness but this region hasnot been

defined quantitativelyand its sensitivityto numericalcalculationsneeds to be studied further.

Numerous investigators have also experimentallymeasured CTOA or CTOD during fracture.

Luxmoore et al [16] showedthat CTOAwas constant from the onset of stable crack growth in two

aluminumalloys,but found differentvalues for different configurations. Paleebut [17],using a laser-

interferometric displacementtechnique,measured CTOD (6i) at the initiationof stable tearing in

compact specimensmade of two aluminumalloys;these results agreed well with numericalvalues

that Newman [12] used to model initiation, stable tearing and instability. Reuter et al [18], using

microtopography [19], measuredCTOD at the initialcrack-front location and found a nearly linear

relationshipwith crack extensionfor low-strength steel. These results would implythat CTOA was

nearly constant from initiationfor some materials. Newman et al [20] and Dawicke et al [21,22],

using a high-resolution camerawith a video system, have measuredthe criticalangles duringstable

crack growth in aluminumalloys. These results also indicatethat CTOAwas constant aidera small
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amountof tearing(greater thanthe sheet thickness)for severalcrack configurations.The non-
constantCTOA region, measuredatthe freesurface,was shownto be associatedwithsevere

tunnelingduringthe initiationof stabletearing.

To develop thefracturemethodologyto predictthe influenceof widespreadfatiguecracking

on fuselagestructures,the behaviorof multiplecracks in thin-sheetmaterialssubjectedto biaxial

loadingwithvariousstiffenerconditions,typicalof fuselagestructure,mustbe tested andanalyzed.
Recenttests, sponsoredby theU.S. FederalAviationAdministration(FAA)TechnicalCenter,were

conductedby Broek et al [23] anddeWitet al [24] onflatpanelsmadeof 2024-T3 aluminumalloy
sheetwitha wide varietyof MSD crackconfigurations.These testsprovideda largedatabaseonthe

effectsof MSD crackingon residualstrength. Newman et al [25], usingthe elastic-plasticfinite-

elementanalysis,has demonstratedthatthe CTOAcriterioncan accuratelymodelthe stabletearing
behaviorof multiplecracks. Donne andDoker [26], recently,conductedfracturetest on 2024-T3

cruciformspecimenssubjectedto biaxialloading. Manyyears ago, Leybold [27] and Vlieger [28]

conductedfracturetestson 2024-T3 sheetpanelswitheither2024 or 7075 aluminumalloy stiffeners

(intactor broken). Thesetypesof tests form theframework for establishingthe creditabilityof the

CTOA fracturecriterionfor predictingstabletearingand fractureof complexstructure.

Theobjectiveof the presentpaperwas to use thecriticalCTOA fracture criterionto study
stabletearingand failureof 2024-T3 aluminumalloypanels (bare and clad)undera widevarietyof

loadingconditions. Analyseswere conductedon panelswith singlecracksundereitheruniaxialor

biaxialloading,panelswithmultiple-sitedamage(MSD)cracking,and crackedstiffenedpanels.A

two-dimensional,elastic-plastic(incrementalflow theory,smallstrain),finite-elementanalysis(FEA)
was usedto modelthe fractureprocess. The criticalCTOAvaluefor eachmaterialthicknesswas

determinedbymatchingthe failureload ona middle-cracktensionspecimen. Comparisonswere

thenmadebetweenmeasuredand predictedload-against-crackextensionandfailureloadsfor panels
under biaxialloading,panelswithMSD cracks, andpanelswithvariousnumberof stiffeners. The

analyseswere thenused to studythe influenceof stiffenerson residualstrength inthe presenceof
widespreadfatiguecracking.

3



NOMENCLATURE

Ac Cross-sectionalarea of crack or notch, mm2

As Cross-sectionalareaof stiffener,mm2
B Specimenthickness,mm

c Crack length (see Fig. 1), mm

ci Initialcrack length,mm
D Rivet diameter,mm

d Minimumelementsize alongcrack line,mm

dr Spacingbetweenmultiplecracks, mm
E Young'smodulus,MPa

L Total lengthof all cracks,mm
Lc Initiallengthof leadcrack, mm

Lr Lengthof each smallMSD crack, mm
P Appliedload,kN
p Rivet pitch,mm

S Appliedstress, MPa

Sk Peak stress duringcrack linkup(k = 1 to 3), MPa

Sn Net-sectionstress, MPa
Sf Gross failurestress, MPa
W Specimenwidth,mm

Ws Stringerwidth,mm
13 Biaxialload or stress ratio

Ac Crackextension,mm

5i Criticalsawcutdisplacementatinitiationof crack, mm

_, Stiffenerratio definedbyAs/Ac

Stiffenerratio definedby As to total panelcross-sectionalarea

Crys Uniaxialyield stress (0.2% offset), MPa
a u Uniaxialtensilestrength,MPa
_gc Criticalcrack-tip-openingangle,degrees

MATERIALS AND CRACK CONFIGURATIONS

Several 2024-T3 aluminumalloymaterialthicknesseswere analyzed. Fourmaterialswere the

bare alloy(1 to 6 ram-thick)andthe other materialswere theclad alloy(1 or 2 mm-thick). These

materialsare summarizedin Table1. For all materialthicknesses, middle-cracktensionspecimen
test results, witheither sawcutsor cracks (see Fig. 1), were used to determinethe fracture

parametersto simulatesawcuts(5i) andcracks (Wc)inthe finite-elementanalysis.Guide plates
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were used to help prevent buckling in all tests.

Tests on the 2.3-mm thick bare alloy were conducted at NASA Langley on three specimen

types: middle-crack tension M(T), compact tension C(T), and three-hole-crack tension (THCT)

specimens, as shown in Figure 1. The M(T) specimens were 76 and 305 mm-wide, the C(T)

specimens were 152.4 mm-wide, and the THCT specimens were 305 mm-wide. All specimens

were fatigue precracked at a low stress level to produce a sharp fatigue crack. The THCT

specimen simulates a crack growing in a stiffened panel, in that, the stress-intensity factor solution

[12] is quite similar. Test results are reported in references 20-22.

Fracture tests were conducted by Broek et al [23] and deWit et al [24] on M(T) and multiple-

site damage (MSD) specimens made of the 1 mm-thick clad and bare alloy, respectively. A typical

MSD specimen is shown in Figure 2. The clad specimens were 508 mm-wide and the bare

specimens were 2300 ram-wide. In both test programs, sawcuts were used instead of fatigue

cracks. The MSD specimens contained a large lead sawcut (such as Sawcut #3) and anywhere
from 2 to 20 MSD sawcuts.

Donne and Doker [26] conducted fracture tests on M(T) and cruciform (biaxial) specimens

made of 6 mm-thick material. The M(T) specimen was 250 mm-wide and the biaxial specimens

were 300 mm-wide in the test section. The biaxial specimen is shown in Figure 3. Both specimen

types had fatigue cracks.

Leybold [27] and Vlieger [28] conducted fracture tests on 2024-T3 sheet panels with either

2024 or 7075 aluminum alloy stiffeners. The stiffened panel tests by Leybold had a single intact

2024 stringer, as shown in Figure 4(a). The stiffener width, Ws, and thickness was varied to give a

stiffness ratio (_,) of 0.2 or 1. The stiffness ratio was defined as the ratio of stringer cross-sectional

area to notch area. The panels had a very sharp notch of various lengths. The tests by Vlieger [28]

had a central sawcut in a sheet with five 7075 stringers with the central stringer broken, as shown in

Figure 4(b). In both test programs, the specimen widths were about 300 mm.

FINITE-ELEMENT ANALYSIS OF STABLE TEARING

An elastic-plastic finite-element code, ZIP2D, was used in the current study [12,25,29]. The

elastic-plastic analysis employed the initial-stress concept ofZienkiewicz et al [30] which is based

on incremental flow theory and the small-strain assumption. A multi-linear representation of the

uniaxial stress-strain curve for 2024-T3 (and 7075-T6 for stringers) was used in the analyses with

the von Mises yield criterion.



The finite-elementmodels for all crack configurations analyzedwere composed of two-
dimensional,constant-strain, triangularelements. All sawcuts and cracks were located along a

straight line, definedas the X-axis (see Fig. 4a). Symmetrywas employed whenever possibleto

reduce the number of degrees-of-freedom. The minimumelement size (d) along the line of crack

extension was about 0.5 mm. This value has been found to be adequate for analyzingstable tearing

in a wide variety of materials,as shown by Newman [12]. Equal-lateraltriangleswere used along

the crack line so that cracks moving in either the positive or negative X-direction, such as in MSD

crack configurations, would experiencethe samelocal mesh pattern. This pattern was found to be

necessary to maintainnearly symmetriccrack extensionfor the MSD crack configurations.

Fictitious springswere used to fix displacementboundary conditions along the X-axis and to

change boundary conditions associated with crack extension. For free nodes along the crack line,

the springstiffnesswere set equal to zero; for fixednodes, the stiffnesswere assigned extremely

large values. See reference 12 for details on the elastic-plasticfinite-elementanalysiswith crack

extension and reference25 for crack extension of multiplecracks.

In the FEA, a criticalvalue of CTOA (We)was chosen as the fracture criterionfor stably

tearing cracks. Whenever the CTOA equaled or exceeded a preset criticalvalue (We)during
incremental loading, the crack-tip node was released and the crack advanced to the next node. This

process was repeated until crack growth becameunstable under load control or the crack reached

the desired length under displacementcontrol. The critical Wevalue was selectedby trial-and-error

to match the average failure load measured on severalM(T) specimens.

To simulate the effects ofa sawcut, a critical sawcut displacement,5i, was selected to model

the deformations that take place at a sawcut before a crack would initiate. Again, the criticalvalue

was selected to match the load require to initiate a crack at the sawcut. Once a crack had initiated,

the critical angle was used to grow the crack. Table 1gives a summaryof the critical fracture

parameters determined from various thickness2024-T3 aluminumalloy M(T) specimens. These
fracture parameters were used to predict stable crack extension and failure of the MSD crack

configurations, the biaxiaUy-loadedspecimens,and the cracked stiffenedpanels.

CRITICAL CTOA MEASUREMENTS

Photographic techniques havebeen developed to measure critical CTOA values during Crack
t

initiation and stable tearing on several differenttypes of laboratory specimens. In one method, a

high-resolution optical microscope connected to a video system was used to record images of the

deformed crack surfaces [21,22]. In each frame, the critical value of CTOA was measured at

several locations behindthe crack tip. For consistency, a standard distance from 0.5 to 1.5 mmwas

selected. In the second method, a digital-imagingcorrelation (DIC) method [31] was used to
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record digitized images of specklepatternsaroundthe crack-tip location. These two methods

producedessentiallythe same CTOAvaluesduringstabletearing. A detaileddescriptionof these

methodsare given inDawicke andSutton[21].

Stablecrack growth experimentswere conductedon three specimentypes: middle-crack

tensionM(T), compacttensionC(T), andthree-hole-cracktension(THCT) specimens,see

Newmanet al [20]. Thestandardlaboratoryspecimens,M(T) and C(T), were selectedto illustrate

the influenceof specimentype andloadingon criticalCTOA values. TheTHCTspecimenwas
selectedto measureCTOA in a structurally-configuredspecimen. TheTHCT specimenhas a

stress-intensityfactor solutionsimilarto a crackedstiffenedpanel[12]. ThecriticalCTOA was

measuredduringthe fractureprocess onthese three specimens. Theresultsare showninFigure 5.

Thecriticalangle Wcis plottedagainstcrack extension,Ac. For eachincrementof crackextension,

severalvaluesof _c were measuredand theaverage is plotted. The initialfatiguecrack surfaces
were flatandshoweda smallamountof tunnelinginthe interior. Duringthe earlystageof stable
tearing,however, the crackfrontexhibitedseveretunnelingin theinteriorandthe cracksurfaces

were stillrelativelyflat [21,22]. Theverticalline indicatesthe approximatelocationwhere the

crack surfaceshadcompletedthe transitionfromflatto shearmodefracture(45 deg. slantthrough

the thickness). TheWcvalues measuredduringcrack initiationwere highbut droppedsharply
duringcrack extensionsequalto aboutthe sheetthickness. Afterwards,the criticalangleappeared

to level off between5 to 7 degrees.The solidhorizontalline is the Wcvalue(6 degs.) determined
from theFEA to fitthe failureloadson severalM(T) test specimens. Newmanet al [20] and, later,
Dawickeand Sutton[21] tracedthe reasonfor the highCTOAvaluesduringcrackinitiationto

severe crack-fronttunnelingandthe large plasticdeformationson the specimensurface(recorded

withthe photographicmethods).

DETERMINING CRITICALCTOA FROM MIDDLE-CRACK TENSION SPECIMENS

The methodused to determinethe criticalCTOA from a fracturetest ona 6 ram-thickM(T)

specimenis illustratedin Figure6. The appliedloadis plottedagainstcrack extension(measured

by electricalpotential[26]). From theFEA, usingthe fullstress-straincurve of the material,a trial-

and-error procedure was used to selecta criticalanglesuchthatthe analysiswould matchthe test

maximumload. The criticalangle,_c, was foundto be 5 degrees assumingplane-stressconditions.
Results fromthe FEA are shownby the solidcurve. Theanalysistendedto overestimateCrack

extensioninthe earlystagesof crack growth. However, this is believedto havebeen causedby

severe crack tunnelingduringcrack initiation.Tunnelingis expectedto be nearlyequalto the plate

thickness. A comparison between the measuredand predicted crack-openingdisplacements(COD)

measured at the centerline of the M(T) specimenis shown in Figure 7. The predicted



displacementswere in excellent agreement with the test results.

PREDICTING FAILURE OF MULTIPLE-SITE DAMAGE SPECIMENS

The criticalCTOA (We)for cracks and 5i for sawcuts determined from the M(T) specimens

made of the 2024-T3 Alcladand bare materialswere used to predict the stable crack growth

behavior of the MSD panels tested by Brock et al [23] and deWit et al [24]. A crack-mouth-

openingdisplacementgage was placed at the centerline of the large lead sawcut (like Sawcut #3 in

Fig. 2) to record the load-displacementrecord duringthe tests. In general, the displacementrecord

gave several peak stresses (Sk) duringstabletearing and crack linkup, in addition to the maximum

failure stress (Sf). Comparisons are made between measured and predicted peak stresses during

crack linkup. In reference 24, videos were also taken of each test to record stable crack extension

and crack linkup. Comparisonare also madebetween measured and predicted crack initiation,

crack extension, and failure loads on the panels.

A comparisonof measured and predicted results for all of the MSD panels test by Broek et al

[23] is given in reference 25. The results for only one of the panelswillbe shown here. The test

had a large sawcut in the center with two smallerMSD sawcuts on either side of the large sawcut,

like than shown in Figure 2. Figure 8 shows applied stressplotted against the total crack length,L,

of all sawcuts and cracks. The tests results indicatedthree peak stresses S1, S2 and S3. The

maximumstress, Sf, corresponded to the second peak stress. These stresses are plotted as

horizontal linesbecause they could not be related to any particularcrack length. Predicted results

are shown as the solid curve (5i = 0.075 mm; _c = 5.1 degs.). The first and second peak stresses

from the analysiswere within2 percent of the test results, while the final peak stress ($3) was

about 5 percent lower than the test result. Final failurewith a singlelarge crack correspondedto

nearly net-section stress Sn = ay s (dotted line). A comparisonbetween the test and FEA results for
the other panels demonstrated that the analysiswith a criticalCTOA could predict crack linkupand

failurewithin about 5 percent.

The objective of the test program conducted by the National Institute of Standards and

Technology (NIST) [24] was to study the fracture behavior of very large-scale, thin-sheet

aluminumalloy specimenswith MSD crack configurations. The test program consisted often

fracture tests on 2300 mm-wide, 1mm-thick,2024-T3 aluminumalloy panelswith a single large
J

sawcut and 6 to 20 MSD sawcuts of various size and location. A summaryof the panels tested is

shown in Table 2. All but one of the panelswere restrained from buckling.

At the beginningof the test program, the FEA method developed at NASA Langleywas used

to predict the load-crack-extensionbehavior of tests from MSD #2 to #10 based only on the results



from the first test (MSD #1). The only exceptionwas test MSD #6 whichwas conductedwithout

anti-bucklingguides. In order to calibratethe finite-elementanalysis(before anyCTOA
measurementswere madeon thematerial),the criticalCTOAwas evaluatedfromtest MSD #1.
Thispanelwas tested witha totalsawcutof 355 ram. Theload-crack-extensionresults fromthis

tests was used to findthetwo fractureparameters(5i, _/c) thatare requiredto simulatefractureof
panels withsawcuts. The criticaldisplacementat the sawcuttip was selectedas 0.2 mmbasedon

the crack-initiationload. The criticalCTOAvaluewas foundto be 3.4 degrees. Thecalculated

load-against-crackextensionagreedwell withthe test results. Thesetwo parameterswere usedto
predict the behaviorof all other panelsbefore the testswere conducted. These resultswere
providedto NIST priorto the tests.

Again,the results for onlyone of the panelswillbe shownhere. The test had a large sawcut
inthe centerwithsix smallerMSD sawcutson either sideof the large sawcut. Figure 9 shows

appliedstress plottedagainstthe lengthof the large leadcrack as it grows and linksup withthe
othersawcutsor cracks. Theboxesat thebottomof thefigure showa schematicof thetip of the
lead sawcutandtheplacementof thethree MSD sawcuts. The test resultsfrom thevideo camera

are shownby the symbols. Again,the predictedresultsare shownas thesolid curve (5i = 0.2 ram;

Wc= 3.4 degs.). The predictedresultsagreedwell withthe test, especiallythe maximumfailure

load. To demonstratethe influenceofsawcuts on crack linkupandfailure,a predictionwas also
madewiththe sawcutparameter5i set to zero, as shownbythe dashedcurve. Althoughthe

maximumfailureloadwas only slightlyaffected,the cracklinkupbehaviorwas greatlyinfluenced,
being30 percentlower thanthe testwithsawcuts. Table2 gives a comparisonbetweenthe

maximumtest loadsandthosepredictedfromthe finite-elementanalyses. Withthe exceptionof
test #5, allpredictionswere withinabout6 percentof the testloads. Thepredictedresults for loads
at crack linkupalso agreed reasonablewellwiththetest results recordedon movieandvideo

systemsused by NIST.

Duringthe test program, thephotographicmethod[21] was used on severaloccasionsto

makemeasurementof the criticalCTOAduringstabletearing. Thelong-focallength,high

resolutioncameraandvideo systemwas used to record the crack-surfaceprofileduringstable
tearing. Materialfrom the firsttest (MSD #1) was alsoprovidedto NASA to makeCTOA
measurementson smalllaboratoryM(T) specimens(75 ram-wide). Severalhundredmeasurements
were madeon the large and smallspecimens. After cracks had initiatedfrom the sawcutsand

grown for aboutone thickness,the criticalCTOAvalueapproacheda constantof about5.5

degrees. TheCTOA valueswere basicallythe samefor the smalllaboratorytest specimensand the
wide paneltests. This observationis crucialintheverificationof the criticalCTOAfracture



criterion.

Themoststrikingdifferencebetween the CTOA values measuredon the test specimensand
that used in the analyseswas the largedifferencebetweenthe angles.The averageof the testswas

5.5 degrees and the computedvalue was 3.4 degrees. The large discrepancy is believedto be due _"
to bucklingof the panelsaboveandbelow theanti-bucklingguides. Observationsof the test panels
duringfractureclearly showedsevere bucklingof the unrestrainedpanel. But furtherstudyis

requiredto resolvethe discrepancy.

PREDICTING FAILURE OF BIAXIALLY-LOADED SPECIMENS

Donne and Doker [26] conductedfracturetestson cruciformspecimensmadeof 6 ram-thick

material.Thebiaxialspecimenwith a fatiguecrack is showninFigure 3. Testswere conducted

underdisplacementcontrol for the loadperpendicularto the crack andloadcontrol inthe other

directionto maintaina constantbiaxialratio 03). Guideplateswere used inthe testswithnegative
13.

A comparisonbetweenmeasuredandpredictedload-against-crackextensionis shownin

Figure 10. Theappliedload is plottedagainstcrack extension(againmeasuredby electrical

potential[26]). Theanalyseswere conductedunderload controlto maintaina constant 13ratio.

The predicted results (solid curves) tended to greatlyoverestimatecrack extension in the early t
stages of crack growth, similarto thatobserved for the M(T) specimen. But here the discrepancies

were much larger. Thereason for the large differencesis unknownbut, again, they maybe related
r

to severe tunneling.A comparisonbetweenthe measuredandpredictedcrack-opening

displacements(COD) measuredat thecenterlineof the biaxialspecimenis showninFigure 11. The
predicteddisplacementsagreedwell withthetest results for allbiaxialratios. The analysesusing

the CTOA methodwas ableto predictfailure loadswithin10 percentof thetest loads for allbiaxial
ratios.

PREDICTING FAILURE OF CRACKED STIFFENED PANELS

To predictstablecrack growth andfailureof crackedstiffenedpanels,thefinite-element

methodwas used to modelboth the sheetandstiffeners,as shown inFigure 12. The stiffener

modellies in the sameplaneasthe sheetandis connectedto the sheetat the rivetlocations. Both

the sheet andstringersare modeledwithconstant-strainelementsandhavemultiple-linearstress-

straincurvesfor the respectivematerials.The rivetconnectionwas modeledby anelastic-perfectly

plasticshear springwithan elasticmodulusof 70,000 MPa,Poisson'sratio of 0.3, anda shearyield
of 200 MPa. Because constant-strainelementswere used to modelthe stringers,analyseswere

conductedon a simulatedstringerwithrivetloading,as shown inFigure 13. MeshA (not shown)
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had 826 elements modeling the stringer and rivet (rivet and sheet were tied together). Mesh B had

16 elements, as shown, and this type of mesh was used to model all stringers. Figure 14 shows a

comparison between the rivet displacements calculated from Mesh A and B. As expected, Mesh B

(dashed curves) was too stiff and gave smaller displacements than Mesh A for a given rivet load

(solid curves). Altering the elastic modulus of the material for Mesh B (E' = 0.5E) gave elastic

displacements that matched well with displacements from Mesh A. The yield properties of the

materials were not changed. Thus, in the panel analyses, the elastic modulus of the stringer
material was set to 0.5E.

Leybold [27] conducted fracture tests on 2024-T3 sheet panelswith a singlestiffener,as

shown in Figure 4(a). The stiffenerwidth, Ws, and thicknesswas variedto give a stiffnessratio (E)

of 0.2 or 1. The stiffnessratio was definedas the ratio of stringercross-sectional area to notch

area. The panels had a very sharp notch of variouslengths. Figure 15 shows a comparisonof

measured and predictedfailure stresses on panelswith no stiffener[32] and those with _,= 0.2 and

1 [27]. The symbolsshow the test results and the curves show the predictedresults using a critical

angle of 6 degrees. The test results and predicted failurestresses agreed well.

Vlieger [28] conducted fracture tests on 2024-T3 sheet panelswith multiplestiffeners. The

tests had a central sawcut in a sheetwith five7075 stringerswith the central stringerbroken, as

shown in Figure 4(b). Figure 16 shows a comparisonof measuredand predicted stable crack

extensionon panelswith differentinitialsawcuts. The symbolsshow the test results and the curves

show the predicted results using fracture parameters (5i, _gc)determinedfrom M(T) specimentests.

Again,the test results and predictions agreed fairlywell.

INFLUENCE OF MSD CRACKING ON BIAXIALLY-LOADEDSTIFFENED PANELS

Switt [1] had postulated that smallMSD cracks mayhave a large influenceon the residual

strength for a large lead crack. This phenomenonhas been demonstratedusing the FEA and the
critical CTOAfracture criterion on fiat panels [25]. How stiffenersimpact the influenceof MSD
cracks on lead-crackbehavior needs to be studied. The FEA and the CTOA criterionwas used to

study this behavior for the 2024-T3 thin-sheet material(_c = 5.1 deg.; _i = 0). AnMSD panel

with seven 7075 stringers (central stringerbroken), as shown in Figure 17, was analyzed. The

finite-elementmodel, shown in Figure 12,was used with symmetryconditions imposedalong the

X- and Y-axes. The panel had a lead crack (Lc = 35 cm)with variousnumber of smallerMSD

cracks placed at equal intervals (dr) to simulaterivet spacing. The stiffnessratio, cross-sectional

area of stringerto total cross-sectional area (It), was either 0.15 or 0.3.

Figure 18 shows the predicted results for a singlecrack (dashed curve) and for a lead crack
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with 15 MSD cracks (solid curve). Thisfigure shows applied stress plotted against lead crack half-

lengthanddemonstratesthat,even withtypicalstiffeners,a large numberof MSD cracks cancause
a large reductioninresidualstrength. ResultsshowninFigure 19 are for the identicalcrack

configuration,as shown inFigure 18, exceptthatthe stiffenerratio was doubledto 0.3. Thefinal

resultsare quitesimilar. The increasein the stiffenerratiodidnot adverselychangethe influenceof

MSD on residualstrength. Theresultsfor onlythree MSD cracks (locatedjust infrontof the lead

crack) are also shown. Theresidualstrengthis only slightlylowered from the singlecrack
behavior, Theseresultsdemonstratethe sensitivityof lead-crackbehaviorwiththe numberand

locationof MSD cracking.

A comparisonbetweenthe relativeresidualstrengthratio fromtest andanalysesfor various
size MSD cracks are shown inFigure 20. This figure showstheratio of residualstrengthwith 15

MSD cracks to thatwithonly a singleleadcrackplottedagainstMSD crack length. Thetest

results (symbols)were obtainedfrom Goranson[33] for flat sheets (no loadtransfer)andlap-splice
joints (loadtransfer)withMSD atthe rivetlocations. The rivetdiameterwas about5 ram. (There
were no stringersinthe testsconductedin reference33.) Thecurveswere calculatedresults for a
flat panelandpanelswithsevenstringersfor _t= 0.15 or 0.3 for varioussizeMSD cracks. For the

larger MSD cracksizes, the test and analysesagreedfairlywell. However, the results for the

smallerMSD cracks didnot agree,presumablybecauserivetholeswere not modeledinthe

analysis. Furthertestingand analyses,withdamagedcurvedpanelswithrivetsandstringers,are
necessaryto substantiatethe use of the FEA andthe criticalCTOAfracturecriterionfor lap-splice
joints andbuildupstructure.

CONCLUSIONS

(1) Criticalcrack-tip-openingangle (CTOA) is independentof crack configurationandloadingfor

1 to 6 mm-thick2024-T3 aluminumalloy materialafter a smallamount of crack extension.

(2) Finite-elementfracture simulationsusing the criticalCTOA gives very accurate details of

plastic deformationand stabletearingof cracksunder complexloading, such as biaxial loadingand
stiffenedpanels.

(3) Finite-elementanalysespredict a significantinfluenceof multiple-sitedamage(MSD) cracks on

lead-crack behavior for both unstiffenedand stiffenedpanels.

(4) Influence of MSD on lead-crack behavior in stiffenedpanels under biaxial loading is only

slightlyimprovedwith larger stiffeners.
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Table 1.- CriticalCTOA determined from 2024-T3 M(T) specimensusing the FEA.

Condition B, 5i, _c, Ref.
mm mm degs.

Alclad 1 0.075 5.1 23
Bare 1 0.2 3.4 (a) 24
Bare 1.6 0 6.0 27
Alclad 2 0.2 6.5 28
Bare 2.3 0 6.0 20-22
Bare 6 0 5.0 26

(a) Bucklingmayhave occurred during
test (measured Wewas 5.5 degs.).

Table 2.- Comparisonof measuredand predicted failureloads on NIST multiple-site
damage (MSD) fracture tests.

MSD Number Test Predicted Percent

Panel of load, load, error

(a) sawcuts kN kN

1 1 342.5 341.6 (b) -0.3
2 1 428.4 427.0 -0.3

3 1 288.7 291.8 1.1

4 7 307.4 298.0 -3.0

5 7 405.7 359.9 -11.3

7 11 214.4 221.5 3.3

8 21 211.3 225.1 6.5

9 21 352.3 332.7 -5.6

10 (c) 11 232.2 221.5 -4.6

(a) MSD #6 was tested without anti-bucklingguides.

(b) Fitted to test (6i = 0.2 mm, _gc= 3.4 deg.).

(c) MSD #10 was a repeat of MSD #7.
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(a) Middle-cracktension (b) Compact tension (c) Three-hole-cracktension

Figure 1 - Laboratory fracture specimenstested and analyzed.
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Figure 2 - Multiple-sitedamage (MSD) crack configuration..
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Figure 5 - Measured and calculated criticalCTOA.
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Figure 6 - Measured and calculated stable tearing for M(T) specimen.
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Figure 7 - Measuredand calculated crack-openingdisplacementsfor M(T) specimen.
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Figure 9 - Measuredand predicted crack linkup and failurefor large specimenwith seven
MSD cracks.
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Figure 12 - Finite-element model of stiffened panelwith MSD cracking.
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Figure 15 - Measuredand predictedfailurestresses for stiffenedand unstiffenedsheets.
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Figure 16 - Measuredand predicted stable tearingin multiplestiffenedsheets with a
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Figure 18 - Influence of stiffeneron leadcrack behavior for single and MSD cracking.
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Figure 19 - Influenceof stiffeneron lead crack behavior for various numberof MSD
cracks.
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